RESEARCH

TEXTILE HYBRID M1

THE WIND RESPONSE

REPORT

TENS-SCL 2012

SPEEDKITS

PROJECTS

Foil constructions fit for the highest mountains
SÖLDEN, AUSTRIA

The new Energy Efficiency Center
WÜRZBURG, GERMANY
contents

PROJECTS

4 Austria Main Station
A New Translucent Membrane Roof
For the Historical Roof Construction

4 Austria Main Station
New Platform Roof Made of ETFE

10 Iran Eye-Catching
Membrane Cones
Bazaar Gol

11 France Mobile Coverage
For the Central Patio
At the Great Mosque

17 Austria Dyneon Fluoropolymer Material
Foil Constructions Fit
For the Highest Mountains

21 Germany A Showcase for Future Energy
Conscious Membrane Architecture
The New Energy Efficiency Center

RESEARCH

6 Textile Hybrid M1
At la Tour de l’Architecte
Research on Hybrid Form- and
Bending-Active Structure Systems

18 The Wind Response on Horn-shaped Membrane Roof
and Proposal of Gust Effect Factor for Membrane Structures

REPORT

12 TENS-SCL 2012
Latin American Symposium
Of Tensile Structures

16 Essener Membranbau
Symposium 2012

24 S(P)EEDKITS WP02 Shelters
Rapid Deployable Kits as Seeds for Self-Recovery

MISC

16 Website to Discover
Form-TL

24 Istanbul 2013 Tensinet Symposium 2013
[RE] Thinking Lightweight
Tehran, Iran

Eye-catching membrane cones

BAZAAR GOL

Context
Bazaar Gol (The Flower Market) is located in a small valley to the west of recreational area of Abbas Abad lands. The Abrisham Bridge II connects the two sides of this small valley together and therefore provides a pedestrian-only link between Norouz and Safarhaye Asemani Parks. Two membrane cones which form part of this structure cover an area of 2000m² above this market. What led to the design of Abrisham Bridge II and its membrane coverings was the aim to create a distinctive landmark for Bazaar Gol in Abbas Abad lands (Fig. 1 & 2).

Objectives
For the membrane roof and the bridge, the following objectives had been determined:

- Linking the two sides if the valley;
- A special and attractive design to build a monumental structure;
- Protection from wind and rain for the stalls of the market;
- Eliminating direct solar radiation that can disturb ongoing activities;
- and, last, an easy installation.

Membrane material
To meet our needs as mentioned above, a PVC-PVDF coated polyester membrane was chosen to provide a great view along with lightness and translucency.

Description of the design
Taking advantage of axial forces and avoidance in use of bending moments in the design of this bridge has resulted in significant weight reduction and enhancement of its aesthetic appearance. Tare affixed at centre to a hinged spindle-shaped truss column and from sides to the foundation and central arches of the bridge.

Building process
Construction works started with the concrete casting of the foundations. When the iron anchorages were placed, the bridge and masts were installed, with high precision. Masts were temporarily stabilized with safety cables, the next step was to clamp the membrane together (which was fabricated in 3 large pieces in order to ease the installation process) and fix it on the ring. After that the whole membrane was elevated to the top of the mast to be fixed and finally pretentioned (Fig. 3).

Leila Araghian
info@dibats.com
www.dibats.com

<table>
<thead>
<tr>
<th>Name of project:</th>
<th>Bazar Gol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of project:</td>
<td>Tehran, Iran</td>
</tr>
<tr>
<td>Year of Construction:</td>
<td>May 2011</td>
</tr>
<tr>
<td>Architect:</td>
<td>Diba Tensile structures</td>
</tr>
<tr>
<td>Engineering:</td>
<td>Massimo Maffei Engineering and Consulting</td>
</tr>
<tr>
<td>Manufacturing, Fabrication & Installation:</td>
<td>Diba Tensile Structures</td>
</tr>
<tr>
<td>Material:</td>
<td>Verseidag PES-PVC-PVDF (2x1700m²)</td>
</tr>
<tr>
<td>Covered Area:</td>
<td>2x1028m²</td>
</tr>
</tbody>
</table>

Figure 1. Plan view
Figure 2. View from the market place & from the bridge
Figure 3. Installation of the membrane